

QCM sur le test en statistique

La Société Mathématique de France (SMF) réalise une étude pour valoriser l'impact de la réflexion mathématique sur le bien-être. Sur 340 individus interrogées, 110 disent faire des maths, 250 se disent heureux et 19,5% disent ne pas faire de maths et être malheureux.

Question 1.

- a) 67% des individus ne font pas de mathématiques.
- b) 66 individus ne font pas de mathématiques ni ne sont heureux.
- c) La proportion d'individus faisant des mathématiques parmi les individus heureux est de 11/25.
- d) 66,3 individus ne font pas de mathématiques et sont malheureux.
- e) La proportion d'individus faisant des mathématiques est plus grande que la proportion d'individus qui ne sont pas heureux.

Question 2.

- a) Parmi les individus heureux, 164 ne font pas de mathématiques.
- b) 165 individus ne font pas de mathématiques mais sont heureux.
- c) Parmi les mathématiciens, 86 individus sont heureux.
- d) La proportion d'individus faisant des mathématiques parmi les individus heureux est plus petite que la proportion d'individus heureux parmi les individus faisant des mathématiques.
- e) La proportion d'individus faisant des mathématiques et n'étant pas malheureux est de 43/170.

Question 3. Quelle est l'hypothèse nulle choisie par la SMF?

- a) Il ne faut pas faire des mathématiques pour être heureux.
- b) Le bonheur ne favorise pas la pratique des mathématiques.
- c) Faire des mathématiques ne rend pas heureux.
- d) Les individus ne faisant pas des mathématiques sont moins malheureux.
- e) Aucune des hypothèses précédentes.

On modélise par la variable aléatoire A la réponse d'un individu à la question « faites-vous des mathématiques? ». Si la réponse est affirmative alors A=1 et sinon A=0. De la même façon on modélise par la variable aléatoire B la réponse d'un individu à la question « êtes-vous heureux? ». On note p la proportion théorique de personnes faisant des mathématiques, q la proportion théorique des personnes heureuses et N la taille de l'échantillon réalisé.

Question 4.

- a) La variable aléatoire A suit une loi de Bernoulli de paramètre p.
- b) La variable aléatoire A suit une loi de binomiale de paramètre 1 et p.
- c) La variable aléatoire A suit une loi de binomiale de paramètre n et p.
- d) Les variables aléatoires A et B sont identiquement distribués uniquement si p = q.
- e) Les variables aléatoires A et B sont toujours identiquement distribués.

Question 5. Quelle formulation correspond à celle de l'hypothèse nulle?

a)
$$\mathbb{P}(B=1 \mid A=0) \leq \mathbb{P}(B=1 \mid A=1)$$

b)
$$\mathbb{P}(B=0, A=0) \leq \mathbb{P}(B=1, A=1)$$

c)
$$\mathbb{P}(B = 0, A = 1) \leq \mathbb{P}(B = 1, A = 1)$$

d)
$$\mathbb{P}(B=0, A=1) \leq \mathbb{P}(B=0, A=0)$$

e) Aucune des réponses précédentes.

On considère désormais que l'on possède n_1 individus faisant des mathématiques et que l'on tire au sort dans cette population. On note alors X_i la réponse de l'individu $i: X_i = 1$ si l'individu est heureux et $X_i = 0$ sinon. On considère également une seconde population de n_2 individus ne faisant pas de mathématiques et dans cette population on note Y_i la réponse de l'individu $i: Y_i = 1$ si l'individu est heureux et $Y_i = 0$ sinon. On pose enfin

$$\bar{X}_{n_1} = \frac{X_1 + \dots + X_{n_1}}{n_1}$$
 et $\bar{Y}_{n_2} = \frac{Y_1 + \dots + Y_{n_2}}{n_2}$.

Question 6. Quelle est la zone de rejet adaptée à notre problème?

a)
$$\mathscr{R} = \{ \bar{X}_{n_1} < \bar{Y}_{n_2} + x_{\alpha} \}$$

b)
$$\mathscr{R} = \{ \bar{X}_{n_1} < \bar{Y}_{n_2} - x_{\alpha} \}$$

c)
$$\mathscr{R} = \{ \bar{Y}_{n_2} < \bar{X}_{n_1} + x_{\alpha} \}$$

d)
$$\mathscr{R} = \{ \bar{Y}_{n_2} < \bar{X}_{n_1} - x_{\alpha} \}$$

e) Aucune des réponses précédentes.

On admet que, sous l'hypothèse nulle et pour n_1 et n_2 assez grand, on a

$$\mathbb{P}\left(\mathscr{R}\right) \leqslant \mathbb{P}\left(N < \frac{-2x_{\alpha}}{\sqrt{\frac{1}{n_{1}} + \frac{1}{n_{2}}}}\right),$$

où N est une variable aléatoire de loi normale $\mathcal{N}(0,1)$.

Question 7. Pour appliquer le Théorème Central Limite à une somme de variables aléatoires $(X_i)_{i\geq 1}$, quelles sont les hypothèses à supposer?

- a) Les variables doivent être indépendantes.
- b) Les variables aléatoires doivent être identiquement distribuées.
- c) Les variables aléatoires doivent suivre une loi de Bernoulli.
- d) La taille de l'échantillon n doit être plus grand que 30.
- e) Aucune des réponses précédentes.

Question 8.

a)
$$\mathbb{P}\left(N < \frac{-2x_{\alpha}}{\sqrt{\frac{1}{n_{1}} + \frac{1}{n_{2}}}}\right) = \mathbb{P}\left(N < \frac{2x_{\alpha}}{\sqrt{\frac{1}{n_{1}} + \frac{1}{n_{2}}}}\right)$$

b)
$$\mathbb{P}\left(N < \frac{-2x_{\alpha}}{\sqrt{\frac{1}{n_{1}} + \frac{1}{n_{2}}}}\right) = \mathbb{P}\left(N > \frac{2x_{\alpha}}{\sqrt{\frac{1}{n_{1}} + \frac{1}{n_{2}}}}\right)$$

c)
$$\mathbb{P}\left(N < \frac{-2x_{\alpha}}{\sqrt{\frac{1}{n_{1}} + \frac{1}{n_{2}}}}\right) = 1 - \mathbb{P}\left(N < \frac{2x_{\alpha}}{\sqrt{\frac{1}{n_{1}} + \frac{1}{n_{2}}}}\right)$$

d)
$$\mathbb{P}\left(N < \frac{-2x_{\alpha}}{\sqrt{\frac{1}{n_{1}} + \frac{1}{n_{2}}}}\right) = 1 - \mathbb{P}\left(N > \frac{2x_{\alpha}}{\sqrt{\frac{1}{n_{1}} + \frac{1}{n_{2}}}}\right)$$

e)
$$\mathbb{P}\left(N < \frac{-2x_{\alpha}}{\sqrt{\frac{1}{n_{1}} + \frac{1}{n_{2}}}}\right) < \mathbb{P}\left(N < \frac{2x_{\alpha}}{\sqrt{\frac{1}{n_{1}} + \frac{1}{n_{2}}}}\right)$$

Question 9. A l'aide de la table de la gaussienne, quelle valeur de x_{α} permet d'avoir $\mathbb{P}(\mathcal{R}) \leq 0,05$?

a)
$$x_{\alpha} = \frac{1.65}{2} \times \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$$

b)
$$x_{\alpha} = \frac{2,33}{2} \times \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$$

c)
$$x_{\alpha} = 0$$

d)
$$x_{\alpha} = 2 \times \frac{2,33}{\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$$

e) Aucune des réponses précédentes.

Lors d'une première étude, on obtient $x_{\alpha}=0,096, \bar{x}_{n_1}=0,782$ et $\bar{y}_{n_2}=0,713$.

Question 10.

- a) Dans cette étude on ne rejette pas (H_0) à une précision de 95%.
- b) Dans cette étude on rejette (H_0) à une précision de 95%.
- c) On conclut que les mathématiques favorisent le bien-être de l'individu.
- d) On conclut que les mathématiques ne favorisent pas le bien-être de l'individu.
- e) Les données ne nous permettent pas de conclure à 95%.

Annexe

	0	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
0	0,5000	0,5040	0,5080	0,5120	0,5160	0,5199	0,5239	0,5279	0,5319	0,5359
0,1	0,5398	0,5438	0,5478	0,5517	0,5557	0,5596	0,5636	0,5675	0,5714	0,5753
0,2	0,5793	0,5832	0,5871	0,5910	0,5948	0,5987	0,6026	0,6064	0,6103	0,6141
0,3	0,6179	0,6217	0,6255	0,6293	0,6331	0,6368	0,6406	0,6443	0,6480	0,6517
0,4	0,6554	0,6591	0,6628	0,6664	0,6700	0,6736	0,6772	0,6808	0,6844	0,6879
0,5	0,6915	0,6950	0,6985	0,7019	0,7054	0,7088	0,7123	0,7157	0,7190	0,7224
0,6	0,7257	0,7291	0,7324	0,7357	0,7389	0,7422	0,7454	0,7486	0,7517	0,7549
0,7	0,7580	0,7611	0,7642	0,7673	0,7703	0,7734	0,7764	0,7793	0,7823	0,7852
0,8	0,7881	0,7910	0,7939	0,7967	0,7995	0,8023	0,8051	0,8078	0,8106	0,8133
0,9	0,8159	0,8186	0,8212	0,8238	0,8264	0,8289	0,8315	0,8340	0,8365	0,8389
1	0,8413	0,8438	0,8461	0,8485	0,8508	0,8531	0,8554	0,8577	0,8599	0,8621
1,1	0,8643	0,8665	0,8686	0,8708	0,8729	0,8749	0,8770	0,8790	0,8810	0,8830
1,2	0,8849	0,8869	0,8888	0,8906	0,8925	0,8943	0,8962	0,8980	0,8997	0,9015
1,3	0,9032	0,9049	0,9066	0,9082	0,9099	0,9115	0,9131	0,9147	0,9162	0,9177
1,4	0,9192	0,9207	0,9222	0,9236	0,9251	0,9265	0,9279	0,9292	0,9306	0,9319
1,5	0,9332	0,9345	0,9357	0,9370	0,9382	0,9394	0,9406	0,9418	0,9429	0,9441
1,6	0,9452	0,9463	0,9474	0,9484	0,9495	0,9505	0,9515	0,9525	0,9535	0,9545
1,7	0,9554	0,9564	0,9573	0,9582	0,9591	0,9599	0,9608	0,9616	0,9625	0,9633
1,8	0,9641	0,9649	0,9656	0,9664	0,9671	0,9678	0,9686	0,9693	0,9699	0,9706
1,9	0,9713	0,9719	0,9726	0,9732	0,9738	0,9744	0,9750	0,9756	0,9761	0,9767
2	0,9772	0,9778	0,9783	0,9788	0,9793	0,9798	0,9803	0,9808	0,9812	0,9817
2,1	0,9821	0,9826	0,9830	0,9834	0,9838	0,9842	0,9846	0,9850	0,9854	0,9857
2,2	0,9861	0,9864	0,9868	0,9871	0,9875	0,9878	0,9881	0,9884	0,9887	0,9890
2,3	0,9893	0,9896	0,9898	0,9901	0,9904	0,9906	0,9909	0,9911	0,9913	0,9916
2,4	0,9918	0,9920	0,9922	0,9925	0,9927	0,9929	0,9931	0,9932	0,9934	0,9936
2,5	0,9938	0,9940	0,9941	0,9943	0,9945	0,9946	0,9948	0,9949	0,9951	0,9952
2,6	0,9953	0,9955	0,9956	0,9957	0,9959	0,9960	0,9961	0,9962	0,9963	0,9964
2,7	0,9965	0,9966	0,9967	0,9968	0,9969	0,9970	0,9971	0,9972	0,9973	0,9974
2,8	0,9974	0,9975	0,9976	0,9977	0,9977	0,9978	0,9979	0,9979	0,9980	0,9981
2,9	0,9981	0,9982	0,9982	0,9983	0,9984	0,9984	0,9985	0,9985	0,9986	0,9986